Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Atmosphere ; 14(4):743, 2023.
Article in English | ProQuest Central | ID: covidwho-2296724

ABSTRACT

The indoor climate of non-climatized churches is usually subject to cyclical fluctuations of temperature and relative humidity induced by external climate conditions which might be dampened by the high thermal capacity of their envelope. However, several phenomena affect their indoor climate (e.g., internal gains due to people and artificial lighting, air infiltration, etc.), which lead to environmental variations that might jeopardize the artworks contained within. In particular, one of the most influential parameters that may affect non-climatized churches is the massive and intermittent presence of people who constantly visit their spaces. In such regard, long-term monitoring allows the collection of environmental data with different building operation conditions and visitor fluxes. This paper analyses the indoor climate of the Milan Cathedral (Duomo di Milano) in Italy for three continuous years (including the lockdown period that occurred in 2020 caused by the COVID-19 pandemic), with a focus on visitors' effects on the indoor environment and the conservation of the main artworks contained within. The results of the analysis have shown that spaces with huge volume are most influenced by the opening of the doors rather than the hygrothermal contribution of the intermittent presence of massive crowds. Moreover, the absence of visitors for a prolonged period correlates with an improvement in the indoor conservation conditions for artworks, especially those made of hygroscopic materials, due to the reduction in short, rapid climate fluctuations.

2.
International Journal of Building Pathology and Adaptation ; 41(1):45-72, 2023.
Article in English | ProQuest Central | ID: covidwho-2278447

ABSTRACT

PurposeAccurate values for infiltration rate are important to reliably estimate heat losses from buildings. Infiltration rate is rarely measured directly, and instead is usually estimated using algorithms or data from fan pressurisation tests. However, there is growing evidence that the commonly used methods for estimating infiltration rate are inaccurate in UK dwellings. Furthermore, most prior research was conducted during the winter season or relies on single measurements in each dwelling. Infiltration rates also affect the likelihood and severity of summertime overheating. The purpose of this work is to measure infiltration rates in summer, to compare this to different infiltration estimation methods, and to quantify the differences.Design/methodology/approachFifteen whole house tracer gas tests were undertaken in the same test house during spring and summer to measure the whole building infiltration rate. Eleven infiltration estimation methods were used to predict infiltration rate, and these were compared to the measured values. Most, but not all, infiltration estimation methods relied on data from fan pressurisation (blower door) tests. A further four tracer gas tests were also done with trickle vents open to allow for comment on indoor air quality, but not compared to infiltration estimation methods.FindingsThe eleven estimation methods predicted infiltration rates between 64 and 208% higher than measured. The ASHRAE Enhanced derived infiltration rate (0.41 ach) was closest to the measured value of 0.25 ach, but still significantly different. The infiltration rate predicted by the "divide-by-20” rule of thumb, which is commonly used in the UK, was second furthest from the measured value at 0.73 ach. Indoor air quality is likely to be unsatisfactory in summer when windows are closed, even if trickle vents are open.Practical implicationsThe findings have implications for those using dynamic thermal modelling to predict summertime overheating who, in the absence of a directly measured value for infiltration rate (i.e. by tracer gas), currently commonly use infiltration estimation methods such as the "divide-by-20” rule. Therefore, infiltration may be overestimated resulting in overheating risk and indoor air quality being incorrectly predicted.Originality/valueDirect measurement of air infiltration rate is rare, especially multiple tests in a single home. Past measurements have invariably focused on the winter heating season. This work is original in that the tracer gas technique used to measure infiltration rate many times in a single dwelling during the summer. This work is also original in that it quantifies both the infiltration rate and its variability, and compares these to values produced by eleven infiltration estimation methods.

3.
IOP Conference Series. Earth and Environmental Science ; 1050(1):012026, 2022.
Article in English | ProQuest Central | ID: covidwho-1931769

ABSTRACT

Air filtration is an essential process in indoor air conditioning and its physical removal of particulate matter is critical for enhancing indoor air quality, especially in arid regions including United Arab Emirates. In such regions, meeting indoor air quality standard is challenging during sporadic sandstorms when common air conditioning systems are unable to maintain indoor air quality properly. Such inability occurs either due to air infiltration through building’s fenestrations exposing indoor air to excessive particulate matter or the failure of inlet air filters after rapid clogging and high pressure drops. Such failure may be observed frequently in buildings with frequent openings such as public buildings and warehouses. Aerosolized pathogenic microorganisms, e.g., SARS-CoV-2 virus, can be modelled through air particle matter and be removed to a certain degree. In addition, the recent global pandemic raised more awareness towards the necessity of particulate matter filtration in indoor environment. Employing independent air filtration units might be a great solution for intermittent or emergency situations, when primary or additional air filtration process is required to attain proper indoor air quality. The main objective of this paper is to attempt designing, manufacturing, and utilizing an easy to set portable filtration unit and to assist buildings’ existing air conditioning systems in airborne dust particle elimination. The unit is designed and manufactured with additional feature accommodating easy installation of commercially available filters for further performance studies. The unit was equipped with all necessary performance monitoring sensors to detect key parameters such as air velocity, pressure differential, temperature, humidity, and particulate matter before and after filtration. The results revealed interesting information associated with the performance of commercially available filters and the feasibility of such independent filtration units.

SELECTION OF CITATIONS
SEARCH DETAIL